Regulation of ENA1 Na(+)-ATPase gene expression by the Ppz1 protein phosphatase is mediated by the calcineurin pathway.
نویسندگان
چکیده
Saccharomyces cerevisiae strains lacking the Ppz1 protein phosphatase are salt tolerant and display increased expression of the ENA1 Na(+)-ATPase gene, a major determinant for sodium extrusion, while cells devoid of the similar Ppz2 protein do not show these phenotypes. However, a ppz1 ppz2 mutant displays higher levels of ENA1 expression than the ppz1 strain. We show here that the increased activity of the ENA1 promoter in a ppz1 ppz2 mutant maps to two regions: one region located at -751 to -667, containing a calcineurin-dependent response element (CDRE), and one downstream region (-573 to -490) whose activity responds to intracellular alkalinization. In contrast, the increased ENA1 expression in a ppz1 mutant is mediated solely by an intact calcineurin/Crz1 signaling pathway, on the basis that (i) this effect maps to a single region that contains the CDRE and (ii) it is blocked by the calcineurin inhibitor FK506, as well as by deletion of the CNB1 or CRZ1 gene. The calcineurin dependence of the increased ENA1 expression of a ppz1 mutant would suggest that Ppz1 could negatively regulate calcineurin activity. In agreement with this notion, a ppz1 strain is calcium sensitive, and this mutation does not result in a decrease in the calcium hypertolerance of a cnb1 mutant. It has been shown that ENA1 can be induced by alkalinization of the medium and that a ppz1 ppz2 strain has a higher intracellular pH. However, we present several lines of evidence that show that the gene expression profile of a ppz1 mutant does not involve an alkalinization effect. In conclusion, we have identified a novel role for calcineurin, but not alkalinization, in the control of ENA1 expression in ppz1 mutants.
منابع مشابه
Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study
Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملModulation of yeast alkaline cation tolerance by Ypi1 requires calcineurin.
Ypi1 was discovered as an essential protein able to act as a regulatory subunit of the Saccharomyces cerevisiae type 1 protein phosphatase Glc7 and play a key role in mitosis. We show here that partial depletion of Ypi1 causes lithium sensitivity and that high levels of this protein confer a lithium-tolerant phenotype to yeast cells. Remarkably, this phenotype was independent of the role of Ypi...
متن کاملUp-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress
Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...
متن کاملGenome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae, the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, is activated by specific environmental conditions, including exposure to Ca(2+) and Na(+), and induces gene expression by regulating the Crz1p/Tcn1p transcription factor. We used DNA microarrays to perform a comprehensive analysis of calcineurin/Crz1p-dependent gene expression following addition of Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 2 5 شماره
صفحات -
تاریخ انتشار 2003